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Abstract

We provide a formal specification of AleoBFT, the consensus protocol of the Aleo blockchain.

1 Introduction

AleoBFT is the consensus protocol of the Aleo blockchain [APa]. AleoBFT is based on Narwhal [DKKSS22]
and Bullshark [SGSKK22a, SGSKK22b], with extensions for dynamic committees with staking. AleoBFT is
implemented in snarkOS [APb] (primarily) and snarkVM [APc] (for some functionality).

This document provides a formal specification of AleoBFT, along with formal proofs of correctness. This
specification and proofs are closely based on the ones developed using the ACL2 theorem prover [CM]. The
ones in this document are written in a generic mathematical notation, which is more widely accessible than
the ACL2 language and libraries.

This document is a draft work in progress, as noted in the title. Currently it is not modeling all of the
salient aspects of AleoBFT, but the goal is to model all of those eventually.

The rest of this section provides an informal overview of AleoBFT. Section 2 contains the formal spec-
ification of AleoBFT, as a labeled state transition system (this notion is defined at the beginning of that
section). Section 3 contains theorems, with proof sketches, of correctness properties of AleoBFT, mainly
formulated as invariants of the labeled state transition system; since fully formal proofs have been carried out
in ACL2, here it suffices to provide proof sketches, especially when they are useful to understand the protocol
better. Section 4 provides some concluding remarks. The mathematical notation used in this document is
overviewed in Section A.

1.1 AleoBFT

AleoBFT is run by validators that communicate via messages over a network that is normally the Internet.
Each validator has a unique address associated with a private key, which provides cryptographic signature
and verification capabilities.

In the Narwhal part of AleoBFT, each validator collects transactions1, from provers, clients, etc. When
certain conditions hold, the validator authors (i.e. generates and signs) a proposal containing transactions,
along with other data mentioned below, and broadcasts it to the other validators. Upon receiving a proposal,
a validator independently validates it, including verifying the author’s signature; if validation succeeds,
the validator endorses the proposal by signing it and sending the signature back to the author. When a
validator receives a certain number of endorsing signatures for a proposal it authored, the validator generates
and broadcasts to the other validators a certificate containing the proposal and all the signatures. Upon
receiving a certificate, a validator verifies the signatures and stores the certificate.

1Transactions are one kind of transmissions, the other kinds being solutions and ratifications. It is transmissions, not just
transactions, that are included in the blocks of the Aleo blockchain. However, in this formal specification, for simplicity we only
talk of transactions, which we treat fairly abstractly anyhow, since they are a more standard term in the literature. Everything
in this formal specification works if one mentally replaces ‘transaction’ with ‘transmission’.
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Validators store certificates in a DAG (directed acyclic graph), which can be visualized as a rectangular
grid whose rows correspond to validators and whole columns correspond to rounds numbered 1, 2, etc. The
certificates are the nodes of the DAG: each certificate has one author (the row) and one round number
(the column); a validator authors at most one certificate per round. The edges of the DAG go from each
certificate to a certain number of certificates in the previous round; as a special case, certificates in round 1
have no outgoing edges, since there is no round 0.

Figure 1: Example DAG
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The information about each edge is part of the source certificate of the edge: each certificate (except in
round 1) has references to certificates in the previous round, so if the certificate is in a validator’s DAG,
there are edges in that same DAG from the certificate to every certificate it references. These references are
part of the proposal contained in the certificate: when a validator generates a proposal, it must already have
a sufficient number of certificates in the DAG at the previous round, and the validator includes references to
those certificates in the proposal. When the validator generates a certificate for the proposal (after receiving
enough signatures, as explained above), it stores the certificate in its DAG and creates the described edges
in its DAG. When a validator receives a certificate authored by another validator, it stores the certificate
in its DAG after all the certificates referenced in the previous round are already in its DAG (requesting
any missing certificates from other validators). So, in all cases, if a validator stores a certificate in its DAG
(whether authored by the same or another validator), the edges from that certificate to certificates in the
previous round are created at the same time the certificate is stored.

Validators start in round 1, where they can readily author proposals since no edges to previous certificates
are required. When a validator has stored a certain number of certificates in round 1, it can move to round
2 and author a proposal at that round, and so on. To adapt to network delays that affect certificate delivery,
validators can also advance their current round under other conditions.

Although validators may never quite have the same DAGs of certificates, the protocol’s requirements on
signatures and edges ensure that there is enough consistency across the DAGs of different validators that
they can agree on a common partial order of (a subset of) their certificates, according to the edges of the
DAG, and that if a certificate with a certain author and round is present, it is the same certificate for all
validators. This is the critical non-equivocation property guaranteed by the Narwhal part of AleoBFT, as
formally proved in this formal specification.

In the Bullshark part of AleoBFT, each validator extends their copy of the blockchain based on their
own DAG, when certain conditions are satisfied. Each certificate has a causal history, which is the set of all
certificates in the DAG reachable from the certificate via the edges. Under certain conditions, a certificate
in the DAG is committed to the blockchain: all the certificates in that certificate’s causal history, except the
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ones already incorporated into the blockchain, are ordered in a canonical way (known to all validators), and
their transactions are put into a new block that extends the blockchain.

A new block may be potentially created for each even round (2, 4, etc.), but some even rounds may be
skipped. Each even round has one of the validators as leader : the leader for each even round is chosen via a
deterministic computation known to all validators, which each validator can carry out locally. If a DAG has
a certificate at an even round authored by the leader, that certificate is an anchor that may be committed
to the blockchain. The anchor is committed if it has a sufficient number of incoming edges from certificates
at the immediately subsequent odd round: these edges are considered votes for the anchor; the anchor is
committed if it has enough votes.

The requirements on votes for anchors, together with the general requirements on the number of edges
to previous certificates for every proposal discussed earlier, guarantee that all validators commit the same
anchors in the same order. This is the critical non-forking property guaranteed by the Bullshark part of
AleoBFT, as formally proved in this formal specification.

TODO: dynamic committees and stake
TODO: correct vs. faulty
TODO: network assumptions

2 Definition

We model AleoBFT as a labeled state transition system, which in general is a tuple

Sys = ⟨S ,E , I ,T ⟩

where:
1. S is the set of possible states.
2. E is the set of possible events.
3. I ⊆ S is the set of possible initial states.
4. T ⊆ S × E × S is the transition relation among old states, events, and new states.

Each triple ⟨s, e, s ′⟩ ∈ T means that the event e causes a transition from the old state s to the new state s ′.
Starting from an initial state s0 ∈ I , a sequence of events [e1, e2, . . .] moves the system through a sequence

of states [s1, s2, . . .], provided that ⟨si−1, ei , si⟩ ∈ T for every i . The corresponding sequences of events and
states may be infinite (if events are always possible) or finite (if a state is reached where events are no longer
possible); an event e is possible in a state s when there exists a triple ⟨s, e, s ′⟩ ∈ T for some s ′. The system
is nondeterministic in general: there may be multiple events possible in a state, and each such event may
lead to different states; the relational nature of T (as opposed to being a function) accommodates this. The
‘labeled’ attribute of the state transition system refers to the fact that the transition relation is a ternary
relation, involving not only old and new states but also events, as opposed to just a binary relation between
old and new states: the transition from an old state to a new state is ‘labeled’ by the event.

In the rest of this section, we define a specific labeled transition system that models AleoBFT. Section 2.1
defines the possible states. Section 2.2 defines the possible events. Section 2.3 defines some operations on
states and their components. Section 2.4 defines the possible initial states. Section 2.5 defines the possible
state transitions. Section 2.6 puts everything together into the labeled state transition system.

2.1 States

The possible states of the system are built out of components, introduced here in a bottom-up fashion.

2.1.1 Addresses

We assume a set of possible addresses
Addr

which we leave abstract in this formal specification.
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In the AleoBFT implementation, these are Aleo addresses aleo1... associated to private keys whose
owners operate in the Aleo blockchain. In particular, each validator in AleoBFT has a private key and thus
an address, which uniquely identifies the validator.

A correct validator is assumed not to share its private key, so a signature by a correct validator can
only be produced by that validator. A faulty validator may share its private key, so a signature by a faulty
validator may be produced by other parties with whom the private key was shared.

2.1.2 Round Numbers

We define the set of possible round numbers as

Round ≜ N \ {0}

i.e. positive integers (1, 2, 3, etc.).
AleoBFT is a DAG-based consensus protocol, where the DAG is organized in rounds denoted by increasing

sequential integers starting from 1.

2.1.3 Transactions

We assume a set of possible transactions
Trans

which we leave abstract in this formal specification.
In the AleoBFT implementation there are transmissions, which include proper transactions as well as

solutions and ratifications. The abstract notion of transactions in this formal specification captures all of
those.

TODO: for dynamic committees, refine this to consist of three kinds of transactions: bonding, unbonding,
and other

2.1.4 Blocks

We define the set of possible blocks as

Block ≜ {B⟨trans, round⟩ | trans ∈ Trans∗

∧ round ∈ Round}

i.e. a block consists of:
1. A finite sequence of transactions trans.
2. A round number round .
In the AleoBFT implementation these are Aleo blockchain blocks, which have a much richer structure.

But the definition above suffices for our formal specification, whose purpose is to show that transactions are
properly put into blocks. As defined later, each block is produced in a round, and thus each block has an
associated round number in a natural way; we explicate that in our definition above, since it is convenient
for our formal specification.

2.1.5 Certificates

We define the set of possible certificates as

Cert ≜ {C⟨auth, round , trans, prevs, endors⟩ | auth ∈ Addr
∧ round ∈ Round
∧ trans ∈ Trans∗

∧ prevs ∈ Pω(Addr)
∧ endors ∈ Pω(Addr)}

i.e. a certificate consists of:
1. An address auth that denotes the author.
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2. A round number round .
3. A finite sequence of transactions trans.
4. A finite set prevs of addresses of authors of certificates in the previous round.
5. A finite set endors of addresses of validators who endorse the certificate.
Each certificate is produced by a validator (with address auth) at a certain round (with number round).

This validator is called the author of the certificate. Correct validators produce at most one certificate
per round; faulty validators are prevented by the protocol (as proved later) from producing more than one
certificate per round. Thus, each certificate in the system is uniquely identified by its author auth and round
number round (as proved later).

Note that we do not formally model proposals (proposed certificates) other than recording ⟨auth, round⟩
pairs in a validator’s state (see Section 2.1.6) for the proposals the validator has endorsed.

A certificate contains (a sequence of) zero or more transactions trans, which the author is proposing for
inclusion in the blockchain.

Each certificate has references to a number of certificates in the previous round. Since the certificate
includes its round number round , the previous round number round − 1 is known from that, so to identify
a certificate in the previous round it suffices to use that certificate’s author, since, as explained above, each
certificate has a unique combination of author and round number. Thus, the prevs component of a certificate
identifies the referenced certificates in the previous round.

For the special case round = 1, there is no previous round (round−1 = 0 is not an actual round number):
as formalized later, prevs = ∅ in this case, i.e. the certificate has no references to certificates in the previous
round. For the more usual case round > 1, the cardinality of prevs is the quorum number (defined later).
This chosen number of references to previous certificates ensures a number of desired properties, which are
presented later.

The author of a certificate signs it with their private key. Our formal specification does not model
signatures explicitly, but the presence of the auth component in the certificate models the presence of that
signature. The author’s signature attests that the certificate is valid: the transactions are valid, it is the only
certificate created by the author for that round, the referenced previous certificates are in the validator’s
possession, and so on. If the author is correct, the attestation is assumed truthful. If the author is faulty,
the attestation may not be truthful, so to prevent an invalid certificate from being generated, additional
signatures are required.

This is why a certificate includes additional signatures by other validators, represented by the set of
addresses endors of those validators. Those validators endorse a proposal by signing it: their signatures
attest that the proposal is valid according to their independent validation. As proved later, endorsers are
distinct from the author, i.e. auth ̸∈ endors. The cardinality of the set of signers {auth} ∪ endors (i.e. the
number of signatures) is the quorum number (defined later). As proved later, this number ensures that faulty
authors cannot generate invalid certificates even if they get other faulty validators to sign their proposals.
Similarly, an endorser other than the author may be correct or faulty, which affects the assumed truthfulness
of the endorsement implied by its signature.

2.1.6 Validator States

We define the set of possible validator states as

Vstate ≜ {V⟨round , dag , buf , ears, last , blocks, comm, timer⟩ | round ∈ Round
∧ dag ∈ Pω(Cert)
∧ buf ∈ Pω(Cert)
∧ ears ∈ Pω(Addr × Round)
∧ last ∈ Round ∪ {0}
∧ blocks ∈ Block∗

∧ comm ∈ Pω(Cert)
∧ timer ∈ {running, expired}}

i.e. a validator state consists of:
1. A round number round .
2. A DAG dag that consists of a set of certificates.
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3. A buffer buf that consists of a set of certificates.
4. A set ears of pairs of addresses and round numbers keeping track of endorsed proposals.
5. An indication last of the number of the last committed round, or 0 if no round has been committed.
6. A blockchain blocks that consists of a finite sequence of blocks.
7. A set comm of all the committed certificates.
8. An indication timer of whether the timer is running or has expired.
This models the internal state of a correct validator. As defined later, faulty validators have no explicit

internal state in our formal specification. The following explanations apply to correct validators.
Each validator is in a round, starting from 1. The state component round indicates the round. It is

incremented under certain conditions, as the validator advances through rounds.
Each validator has a DAG of certificates, which is modeled as the set of certificates dag . Under invariants

proved later, a set of certificates indeed represents a DAG: the certificates are the vertices of the graph, and
the edges are represented by the prevs components of the certificates, as explained in Section 2.1.5. The
DAG can be visualized in a grid where rows correspond to validators (in some immaterial order) and columns
correspond to round numbers (increasing from left to right): the row-column “coordinates” of each certificate
correspond to its author and round number. The graph has a directed edge from each certificate with author
auth and round number round > 1 to each certificate with author prev and round number round − 1 when
prev is an element of the prevs state component of the first certificate. See figure 1 for an example.

The set buf of certificates is a buffer where each certificate received by a validator is initially put. The
certificate is moved to the DAG dag only when the DAG has all the previous certificates linked by the
certificate. This ensures that the DAG has all the outgoing edges of each certificate, so that it is closed
under the causal history of each certificate; i.e. it has all the certificates reachable from each certificate via
the edges of the DAG. Certificates may not arrive in order, so a certificate may stay in the buffer for a while.
When the AleoBFT implementation receives a certificate, it actively requests the missing certificates from
the certificate’s causal history; our formal specification models those requests as separate events.

The ears state component is a set of pairs ⟨auth, round⟩ that identify proposals (from other validators),
that this validator has endorsed (by signing) but has not yet received as a certificate. The exact use of ears is
described later, when the transitions of the system are defined, but the purpose is to ensure non-equivocation
of certificates, i.e. that there is at most one certificate with a given author and round number.

Each validator has its view blocks of the blockchain, as a sequence of blocks that is initially empty (we
do not explicitly model the genesis block) and that grows from left to right.

Each validator keeps track of the last round in which it committed, to its blockchain, transactions from
certificates in the DAG; that is, transactions from some of the certificates in the DAG are put into a new block
that is added to the blockchain. As defined later, each commitment happens at a round, whose number is part
of the block created by the commitment, as explained in Section 2.1.4; commitments happen at increasing
rounds. The last state component is the number of the last round at which a block was committed. Initially
the blockchain is empty, no commitment has happened yet, and last = 0, which is not a valid round number
since round numbers are positive, as defined in Section 2.1.2.

Each validator keeps track of all the certificates that have been committed so far, in the comm state
component. This facilitates the process of committing more certificates in this formal specification, which
must exclude already committed certificates, as defined later.

Under certain situations, a validator starts a timer, which runs for a while until it eventually expires. We
do not model real time in this formal specification, but we model the existence of the timer in two possible
states, running and expired, and its transitions between these two states.

2.1.7 Messages

We define the set of possible messages as

Msg ≜ {M⟨cert , dest⟩ | cert ∈ Cert
∧ dest ∈ Addr}

i.e. a message consists of:
1. A certificate cert that constitutes the payload of the message.
2. The address dest of the validator that is the destination of the message.
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In this formal specification, this is the only kind of messages exchanged among validators. Since this
model is currently focused on the Bullshark aspects of AleoBFT, the Narwhal aspects are modeled at an
abstract level: instead of explicitly modeling the exchange of proposals and signatures that eventually lead
to certificates that are also exchanged, we model certificate creation as an atomic event, as the end result of
the underlying exchange of proposals and signatures.

As defined later, each message is sent by the author of the certificate in the message. Thus, every message
has explicit source and destination.

2.1.8 System States

We define the set of possible system states as

State ≜ {S⟨vstates,msgs⟩ | vstates : Addr ⇝ Vstate ∪ {faulty}
∧ D(vstates) ̸= ∅
∧ msgs ∈ Pω(Msg)}

i.e. a system state consists of:
1. A finite non-empty map vstates representing all the validators in the system and their states.
2. A set msgs of messages representing the state of the network.
AleoBFT is run by a non-empty collection of validators, whose addresses are the elements of the domain

D(vstates) of the map vstates. Each validator with address val ∈ D(vstates) is: either correct, in which case
vstates(val) ∈ Vstate, i.e. the validator has an associated internal state; or faulty, in which case vstates(val) =
faulty, i.e. the validator has an associated indication of faultiness. (Note that faulty ̸∈ Vstate.)

As defined later, validators never change their correct or faulty status: a validator is either always correct
or always faulty. The ‘always correct’ case means that the validator always follows the protocol, while the
‘always faulty’ case means that the validator does not always follow the protocol, i.e. it is the negation of
the first case. Any deviation from the protocol, no matter how small or temporary, renders a validator
faulty. So ‘always faulty’ must be read not as never following the protocol, but failing to follow the protocol
perfectly at any point, which is enough to mar the correctness status of the validator in a way that the
formal specification considers permanent. This is normally the meaning of ‘faulty’ in the BFT literature,
although that meaning may not be always explicated in the terms just explained.

The faulty designation for faulty validators does not model their internal states, which is appropriate for
our formal model. Faulty validators may act arbitrarily, but what matters in the protocol is the impact
that they may have on correct validators, specifically whether they can compromise the ability of correct
validators to run the protocol and agree successfully. The only way for faulty validators to influence correct
validators, in our model of the protocol, is to send messages to the network, which may be received by
correct validators. Thus, we model (in the definition of state transitions) the possible messages that faulty
validators may generate, but there is no need to have those messages depend on any specific internal state
of the faulty validators.

The arbitrary behavior of faulty validators is of course constrained not to violate physical laws and such.
In particular, faulty validators cannot break cryptography; as explained in Section 2.1.1, we assume that
correct validators do not share their private keys. In addition, we assume that faulty validators cannot guess
or extract correct validators’ private keys and thus cannot forge their signatures. On the other hand, as
notes in Section 2.1.1, faulty validators may well share their private keys.

2.2 Events

We define the set of possible events as

Event ≜ {Ecreate[cert ] | cert ∈ Cert}
∪ {Ereceive[msg ] | msg ∈ Msg}
∪ {Estore[cert , val ] | cert ∈ Cert ∧ val ∈ Addr}
∪ {Eadvance[val ] | val ∈ Addr}
∪ {Ecommit[val ] | val ∈ Addr}
∪ {Etimer[val ] | val ∈ Addr}
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i.e. an event is one of the following:
1. The creation of a new certificate cert by its author.
2. The receipt of a message msg from the network to the destination validator.
3. The storage of a certificate cert into the DAG of a validator val from its buffer.
4. The advancement of the current round by a validator val .
5. The commitment of certificates by a validator val .
6. The timer expiration in a validator val .
Section 2.5 defines the exact circumstances in which each event is possible, and how the event changes

the system state. The short descriptions above should give an initial intuitive idea.

2.3 Operations

TODO: for dynamic committees, generalize some of the functions below, which are no longer invariant and
are defined w.r.t. each validator

2.3.1 Number of Validators

We define a function
NumAll : State → N \ {0}
NumAll(S⟨vstates,msgs⟩) ≜ |D(vstates)|

that yields the total number of validators in a system state, i.e. the cardinality of the domain of the validator
map. As proved later, this domain is unchanged by state transitions.

This number is known to every validator. This is often referred to as n or N in the BFT literature.

2.3.2 Number of Correct Validators

We define a function

NumCorrect : State → N
NumCorrect(S⟨vstates,msgs⟩) ≜ |{val ∈ D(vstates) | vstates(val) ̸= faulty}|

that yields the number of correct validators in a system state, i.e. the cardinality of the subset of the domain
of the validator map associated to validator states and not to faulty. As proved later, this subset is unchanged
by state transitions.

This number is known in the model, but not to validators.

2.3.3 Number of Faulty Validators

We define a function

NumFaulty : State → N
NumFaulty(S⟨vstates,msgs⟩) ≜ |{val ∈ D(vstates) | vstates(val) = faulty}|

that yields the number of faulty validators in a system state, i.e. the cardinality of the subset of the domain of
the validator map associated to faulty and not to validator states. As proved later, this subset is unchanged
by state transitions.

This number is known in the model, but not to validators. This is sometimes referred to as m or f in
the BFT literature, but this symbol is also used to refer to the number we define in Section 2.3.4.

It is the case that

NumAll(state) = NumCorrect(state) +NumFaulty(state)
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2.3.4 Maximum Number of Faulty Validators

We define a function

MaxFaulty : State → N
MaxFaulty(state) ≜ max {x ∈ N | x < NumAll(state)/3}

that yields the maximum number of faulty validators in a system state for the protocol to be Byzantine-
fault-tolerant. This is the largest integer below one third of the total number; that is, more than two thirds
of the validators must be correct. This is a classic condition in the BFT literature.

This number is sometimes referred to as m or f in the literature, which does not always emphasize
the distinction between the maximum tolerated number MaxFaulty of faulty validators, which is calculable
solely from NumAll and known to validators, and the actual number NumFaulty of faulty validators, which
is unknown to validators (see Section 2.3.3).

It is the case that
MaxFaulty(state) = ⌊(NumAll(state)− 1)/3⌋

and that
MaxFaulty(state) = ⌈NumAll(state)/3⌉ − 1

when NumAll(state) > 0, providing alternative definitions of MaxFaulty in terms of floor and ceiling of
division.

Using the symbols n for NumAll(state) and f for MaxFaulty(state), as often done in the literature, since
f is the maximum integer below n/3, there are three possible values for n as a function of f : n = 3f + 1,
n = 3f+2, and n = 3f+3. Some BFT literature just uses the more restrictive assumption n = 3f+1, but that
is not fully general; while it is normally not difficult to generalize results obtained under the more restrictive
assumption to results for the more general assumption, caution must be exercised (see Section 2.3.6).

The definition of State in Section 2.1.8, requires the presence of at least one validator, so NumAll(state) ̸=
0. The definition ofMaxFaulty would be ill-formed otherwise. Indeed, the case of no validator is so degenerate
as to not be of interest. If NumAll(state) ∈ {1, 2, 3}, then MaxFaulty(state) = 0, i.e. no failures are tolerated.
The protocol could theoretically run with 1, 2, or 3 (all correct) validators, but in practice it is normally run
with at least 4 validators, in order to tolerate at least one failure.

2.3.5 Fault Tolerance

We define a predicate

BFT : State → B
BFT (state) ≜ [NumFaulty(state) ≤ MaxFaulty(state)]

that says whether the system is Byzantine-fault-tolerant in a state: the actual number of faulty validators
must not exceed the maximum number of faulty validators. Since NumAll is unchanged by state transitions,
so is MaxFaulty , and so is the BFT predicate.

2.3.6 Quorum

We define a function
Quorum : State → N \ {0}
Quorum(state) ≜ NumAll(state)−MaxFaulty(state)

that yields the quorum number used in the definition of the state transitions. This number is known to
validators, since it is the difference between two known numbers: the total number of validators, and the
maximum number of faulty validators (which is calculated from the total number as defined in Section 2.3.4).
Like the numbers from which it is defined, the quorum number is unchanged by the state transitions.

Using the symbols n for NumAll(state) and f for MaxFaulty(state), as often done in the literature, the
quorum number is n− f . As explained in Section 2.3.4, there are three possible values of n as a function of
f : n = 3f + 1, n = 3f + 2, and n = 3f + 3. In the first case, n − f = 2f + 1; but in the other two cases,
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n − f = 2f + 2, or n − f = 2f + 3. Some BFT literature is not general or precise regarding the quorum
number: it uses 2f +1 instead of n−f , without explicating the assumption n = 3f +1 behind 2f +1; it uses
2f + 1 in the description of algorithms that are meant to be general and work for every n, when it should
use n− f in those algorithms instead. The general and correct quorum number is n− f , not 2f +1, which is
only correct under the (unnecessarily restrictive) condition that n = 3f + 1; the claimed theorems are false
(i.e. they have counterexamples) if 2f + 1 is used without the assumption that n = 3f + 1.

2.3.7 Validator State Updates

We define the following functions that update components of the validator state.

Function that updates the round of a validator state:

UpdateRound : Vstate × Round → Vstate

UpdateRound(vstate, round ′) ≜ V⟨round ′, dag , buf , ears, last , blocks, comm, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the DAG of a validator state:

UpdateDag : Vstate × Pω(Cert) → Vstate

UpdateDag(vstate, dag ′) ≜ V⟨round , dag ′, buf , ears, last , blocks, comm, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the buffer of a validator state:

UpdateBuf : Vstate × Pω(Cert) → Vstate

UpdateBuf (vstate, buf ′) ≜ V⟨round , dag , buf ′, ears, last , blocks, comm, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the endorsed pairs of a validator state:

UpdateEar : Vstate × Pω(Addr × Round) → Vstate

UpdateEar(vstate, ears ′) ≜ V⟨round , dag , buf , ears ′, last , blocks, comm, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the last committed round of a validator state:

UpdateLast : Vstate × (Round ∪ {0}) → Vstate

UpdateLast(vstate, last ′) ≜ V⟨round , dag , buf , ears, last ′, blocks, comm, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the blockchain of a validator state:

UpdateBlocks : Vstate × Block∗ → Vstate

UpdateBlocks(vstate, blocks ′) ≜ V⟨round , dag , buf , ears, last , blocks ′, comm, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the committed certificates of a validator state:

UpdateComm : Vstate × Pω(Cert) → Vstate

UpdateComm(vstate, comm ′) ≜ V⟨round , dag , buf , ears, last , blocks, comm ′, timer⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩

Function that updates the timer of a validator state:

UpdateTimer : Vstate × {running, expired} → Vstate

UpdateTimer(vstate, timer ′) ≜ V⟨round , dag , buf , ears, last , blocks, comm, timer ′⟩
where vstate = V⟨round , dag , buf , ears, last , blocks, comm, timer⟩
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2.3.8 Leaders

We assume a function
Leader : Pω(Addr)× Round → Addr

with Leader(vals, round) ∈ vals

that picks, for each round, a leader address among a set of addresses.
When this function is used, vals is the set of all the validator addresses in the system, and the round

number round is an even one (but we regard the function as defined on all rounds, for simplicity). The
picked leader may be correct or faulty.

This function is known to every validator, so correct validators always agree on which validator is the
leader at which round. But the details of the leader choice are immaterial in this specification.

2.3.9 Anchors

We define a function

Anchors : Pω(Cert)× Pω(Addr) → Pω(Cert)

Anchors(dag , vals) ≜ {C⟨Leader(vals, round), round , . . .⟩ ∈ dag | round mod 2 = 0}

that yields the anchors of a DAG, i.e. the certificates at an even round authored by the leaders of those
rounds.

Anchors are the certificates that, under suitable conditions, are committed to the blockchain along with
their causal histories. A DAG does not necessarily have an anchor at each even round; the leader address is
defined for every round, but a certificate authored by that leader in that round is not necessarily generated
or received at any point in time. Even when an anchor is present in a DAG, it does not necessarily get
committed: certain conditions must be satisfied, defined in Section 2.5.

2.3.10 Edges

We define a predicate

Edge : Cert × Cert → B
Edge(cert , cert′) ≜ cert = C⟨. . . , round , . . . , prevs, . . .⟩

∧ round > 1
∧ cert ′ = C⟨prev , round − 1, . . .⟩
∧ prev ∈ prevs

that says whether there is an edge from a certificate to another: the first certificate must be in a round
after the first round, and the second certificate must be in the immediately preceding round, and the second
certificate’s author must be one of the addresses referenced by the first certificate. Note that this predicate
is defined without explicit reference to a DAG, based only on the two certificates.

2.3.11 Paths

We define a predicate

Path : Cert × Cert × Pω(Cert) → B
Path(cert , cert ′, dag) ≜ ∃[cert1, . . . , certp ] ∈ Cert+ . cert1 = cert

∧ certp = cert ′

∧ ∀i ∈ {1, . . . , p − 1} . Edge(cert i , cert i+1)
∧ ∀i ∈ {1, . . . , p} . cert i ∈ dag

that says whether there is a path from a certificate to another in a DAG: there must exist a non-empty
sequence of certificates in the DAG that starts with the first certificate and ends with the second certificate,
where each pair of adjacent certificates in the sequence is linked by an edge. This definition includes the
empty path from a certificate to itself, when p = 1 and cert1 = cert = cert ′.
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2.3.12 Anchor Paths

We define a predicate

AnchorPath : Round × Round × Pω(Cert)× Pω(Addr) → B
AnchorPath(round , round ′, dag , vals) ≜ cert = C⟨. . . , round , . . .⟩ ∈ Anchors(dag , vals)

∧ cert ′ = C⟨. . . , round ′, . . .⟩ ∈ Anchors(dag , vals)
∧ Path(cert , cert ′, dag)

that says whether two rounds have anchors connected by a path: cert is an anchor at round round in the
DAG, cert ′ is an anchor at round round ′ in the DAG, and there is a path from cert to cert ′ in the DAG.
When this predicate is used, round ′ < round , i.e. we consider paths to earlier rounds.

2.3.13 Certificate Ordering

We assume a function

Order : Pω(Cert) → Cert∗

with

(
Order(certs) = [cert1, . . . , certm ] =⇒
certs = {cert1, . . . , certm} ∧ (∀i , i ′ ∈ {1, . . . ,m} . i ̸= i ′ =⇒ cert i ̸= cert i′)

)
that orders a set of certificates into a sequence without repetitions, according to some criterion that is
immaterial to this specification.

As formalized later, this is used by (correct) validators to sequentialize certificates to commit to the
blockchain. All validators use the same ordering function assumed here.

2.4 Initialization

We define the set of possible initial system states as

InitState ≜ {S⟨vstates, ∅⟩ | ∀val ∈ D(vstates) . vstates(val) = V⟨1, ∅, ∅, ∅, 0, ϵ, ∅, expired⟩
∨ vstates(val) = faulty}

i.e. there are no messages in the network, and each correct validator has round number 1, no certificates in
the DAG, no certificates in the buffer, no endorsed author-round pairs, no blocks, no committed rounds, no
committed certificates, and the timer expired (i.e. not running). There are different possible initial states
for every choice of addresses of correct and faulty validators: given those, vstates must assign to each such
address either the initial validator state or the faulty indication.

2.5 Transitions

We define the transitions of the system by defining, for each kind of event:
1. A predicate that says under which conditions an event can happen in a state.
2. A function that says which new state results from that event, when it happens.

Given a state and an event on which the predicate holds, there is thus a unique new state to which the
system moves, namely the one returned by the function. However, different events may be possible in the
same state, making the system nondeterministic.

2.5.1 Certificate Creation

We define a predicate

HasNoAR : Vstate ×Addr × Round → B
HasNoAR(vstate, auth, round) ≜ C⟨auth, round , . . .⟩ ̸∈ dag

∧ C⟨auth, round , . . .⟩ ̸∈ buf
∧ ⟨auth, round⟩ ̸∈ ears

where vstate = V⟨. . . , dag , buf , ears, . . .⟩
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that says whether a validator does not have a given author and round, in the form of a certificate with
that author and round in the DAG or buffer, or in the form of an element in the set of endorsed pairs.
This predicate is used below to express the condition that (correct) validators sign (i.e. author or endorse) a
certificate only if it is a new certificate from the given author in the given round, according to the information
that validators have recorded in their state.

We define a predicate

HasPrevious : Vstate × Pω(Addr)× Round → B
HasPrevious(vstate, prevs, round) ≜ ∀prev ∈ prevs . C⟨prev , round − 1, . . .⟩ ∈ dag

where vstate = V⟨. . . , dag , . . .⟩

that says whether a validator has, in its DAG, all the certificates with given authors at the round immediately
preceding a given round. This predicate is used below to express the condition that (correct) validators sign
(i.e. author or endorse) a certificate only if they have all the certificates that the new certificate links to.
This predicate is used only with prevs = ∅ if round = 1: in that case, the universal quantification is trivially
true, without the need to consider certificate forms C⟨. . . , 0, . . .⟩ that are technically ill-formed.

We define a predicate

CreateCondAuth : Vstate × Cert → B
CreateCondAuth(vstate, cert) ≜ round ′ = round

∧ C⟨auth, round , . . .⟩ ̸∈ dag
∧ HasPrevious(vstate, prevs, round)

where vstate = V⟨round ′, dag , . . .⟩
∧ cert = C⟨auth, round , . . . , prevs, . . .⟩

that says whether a new certificate can be created from the standpoint of the author (if correct):
1. The round number of the certificate must be the author’s current round number.
2. The DAG must not contain an old certificate with the same author and round number.
3. The DAG must have all the certificates that the new certificate links to.

Correct validators author at most one certificate per round, and do so only if their DAG has all the previous
certificates. The predicate HasPrevious is defined earlier.

We define a predicate

CreateCondEndor : Vstate × Cert → B
CreateCondEndor(vstate, cert) ≜ HasNoAR(vstate, auth, round)

∧ HasPrevious(vstate, prevs, round)
where cert = C⟨auth, round , . . . , prevs, . . .⟩

that says whether a new certificate can be created from the standpoint of an endorser (if correct):
1. The endorser must not already have a record of the author and round of the certificate.
2. The endorser’s DAG must have all the certificates that the new certificate links to.

Correct endorsers sign at most one certificate per author per round, and do so only if their DAG has all the
previous certificates. The predicates HasNoAR and HasPrevious are defined earlier.
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We define a predicate

CreateCond : State × Cert → B
CreateCond(state, cert) ≜ auth ∈ D(vstates)

∧ endors ⊆ D(vstates)
∧ auth ̸∈ endors
∧ |endors| = Quorum(state)− 1

∧ |prevs| =
{
0 if round = 1
Quorum(state) otherwise

∧
(
vstates(auth) ̸= faulty =⇒
CreateCondAuth(vstates(auth), cert)

)
∧ ∀endor ∈ endors .

(
vstates(endor) ̸= faulty =⇒
CreateCondEndor(vstates(endor), cert)

)
where state = S⟨vstates, . . .⟩

∧ cert = C⟨auth, round , . . . , prevs, endors⟩

that says whether a certificate may be created in a state:
1. The certificate author must be a validator in the system.
2. The certificate endorsers must be validators in the system.
3. The author must be distinct from the endorsers.
4. The number of endorsers must be one less than the quorum.
5. The certificate must have links to a quorum of previous certificates, or to none if the round is 1.
6. If the author is correct, its state satisfies the conditions for certificate creation.
7. For each correct endorser, its state satisfies the conditions for certificate creation.

The conditions expressed by CreateCondAuth and CreateCondEndor apply only to correct authors and
endorsers. Faulty ones do not have an internal state, and can author and endorse certificates at will, so
long as the certificates can get enough signatures. In general, author and endorsers together form a quorum
(this critically depends on the condition that the author is distinct from the endorsers). The condition
prevs ⊆ D(vstates), i.e. that the authors of the previous certificates are validators in the system, is not
included in the above definition because it follows from HasPrevious and invariants proved later.

We define a function

CreateNextAuth : Vstate × Cert → Vstate

CreateNextAuth(vstate, cert) ≜ UpdateDag(vstate, dag ∪ {cert})
where vstate = V⟨. . . , dag , . . .⟩

that updates the state of the author (if correct) of a new certificate, by adding the certificate to the DAG.
This function is used below to express how the creation of a new certificate updates the state of the system.

We define a function

CreateNextEndor : Vstate × Cert → Vstate

CreateNextEndor(vstate, cert) ≜ UpdateEar(vstate, ears ∪ {⟨auth, round⟩})
where vstate = V⟨. . . , ears, . . .⟩

∧ cert = C⟨auth, round , . . .⟩

that updates the state of an endorser (if correct) of a new certificate, by adding the author and round to the
set of endorsed pairs. This function is used below to express how the creation of a new certificate updates
the state of the system.
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We define a function

CreateNext : State × Cert → State

CreateNext(state, cert) ≜ S⟨vstatesp,msgs ∪msgs ′⟩
where state = S⟨vstates,msgs⟩

∧ cert = C⟨auth, round , . . . , endors⟩
∧ {endor1, . . . , endorp} = {endor ∈ endors | vstates(endor) ̸= faulty}

∧ vstates0 =

{
vstates{auth 7→ CreateNextAuth(vstates(auth), cert)} if vstates(auth) ̸= faulty
vstates otherwise

∧ ∀i ∈ {1, . . . , p} . vstatesi = vstatesi−1{endor i 7→ CreateNextEndor(vstates(endor i), cert)}
∧ msgs ′ = {M⟨cert , dest⟩ | dest ∈ D(vstates) \ {auth}

∧ vstates(dest) ̸= faulty}

that updates the state of the system when a new certificate is created:
1. If the author is correct, its state is updated according to CreateNextAuth, defined earlier.
2. The state of each correct endorser is updated according to CreateNextEndor , defined earlier.
3. The network is extended with messages containing the certificate, from the author to all the other

validators if correct.
The above definition works as follows:

• We start with a system state state, consisting of a validator map vstates and network msgs, and with
the new certificate cert .

• We take the set of correct endorsers, which in general is a subset of all endorsers, since some may be
faulty.

• If the author is correct, we update its state, obtaining an updated validator map vstates0. If the author
is not correct, vstates0 is vstates, unchanged. (We do this for uniformity, so that vstates0 is the same
starting point for updating the correct endorser states.)

• We update the state of each such correct endorser, one after the other, obtaining a sequence of validator
maps vstates1 through vstatesp, each updating the state of the corresponding correct endorser. (The
order of the endorsers in the set enumeration is immaterial, as the validator map updates are indepen-
dent. It is also immaterial whether there are repeated endorsers in the set enumeration, because the
map updates are idempotent. The set of correct endorsers could be empty in principle, in which case
p = 0, but that does not happen in a fault-tolerant system.)

• We create a set msgs ′ of new messages, each containing the certificate, and having all correct validators,
except the author if correct, as destinations.

• The complete updated system state consists of the validator map vstatesp, and the network obtained
by joining the old messages msgs with the new messages msgs ′.

Any validator, correct or faulty, can author a new certificate, provided that it can get enough endorsers.
If the author is faulty, obtaining enough endorsers is the only restriction. If the author is correct, it means
that they are following the protocol, and thus there are additional restrictions, expressed in CreateCond
(specifically, CreateCondAuth) that the author must satisfy.

Any validator, correct or faulty, can endorse a new certificate. If the endorser is faulty, there is no
restriction. If the endorser is correct, it means that they are following the protocol, and thus there are
additional restrictions, expressed in CreateCond (specifically, CreateCondEndor), that endorsers must satisfy.

The creation of the new messages msgs ′ models the first act of a reliable broadcast, in the precise technical
sense used in the BFT literature. The reason why only messages to correct validators are created is that
faulty validators can act arbitrarily regardless of the messages they receive. Their arbitrary behavior is only
relevant to the extent that it may impact correct validators. In our model, the arbitrary behavior of faulty
validators is limited to: authoring certificates at will, so long as, critically, they obtain enough signatures;
and endorsing certificates at will, but not, critically, impersonating correct validators.

In our current model, a certificate creation event models, at a more abstract level, the Narwhal exchange
of proposals, signatures, and certificates. Our certificate creation event represents the final act of those
exchanges, after enough signatures have been collected.
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2.5.2 Message Receipt

We define a predicate
ReceiveCond : State ×Msg → B
ReceiveCond(state,msg) ≜ msg ∈ msgs

where state = S⟨. . . ,msgs⟩
that says whether a message can be received from the network: the message must be in the network.

We define a function

ReceiveNextDest : Vstate × Cert → Vstate

ReceiveNext(vstate, cert) ≜ vstate ′′

where vstate = V⟨. . . , buf , ears, . . .⟩
∧ vstate ′ = UpdateBuf (vstate, buf ∪ {cert})
∧ vstate ′′ = UpdateEar(vstate ′, ears \ {⟨auth, round⟩})

that updates the state of the (correct) validator whose address is the destination of a message with a
certificate. The certificate is added to the buffer. If the validator is an endorser of that certificate, the
author and round is removed from the set of endorsed pairs, because now the validator has the whole
certificate, and no longer needs the record of having endorsed it without having it; that set difference causes
no change if the validator is not an endorser.

We define a function

ReceiveNext : State ×Msg → State

ReceiveNext(state,msg) ≜ S⟨vstates ′,msgs \ {msg}⟩
where state = S⟨vstates,msgs⟩

∧ msg = M⟨cert , dest⟩
∧ vstates ′ = vstates{dest 7→ ReceiveNext(vstates(dest), cert)}

that updates the state of the system when a message is received by a validator. It is an invariant, proved
later, that the destination of a message in the network is always a correct validator, never a faulty one:
messages are created when new certificates are created, according to the definition in Section 2.5.1, which
only generates messages for correct validators. The predicate ReceiveCond defined earlier, upon which this
ReceiveNext is conditioned, requires the message to be in the network, and therefore the destination address
must be of a correct validator. The destination validator state is updated as defined in ReceiveNextDest
defined earlier, and the message is removed from the network.

2.5.3 Certificate Storage

We define a predicate

StoreCondVal : Vstate × Cert → B
StoreCondVal(vstate, cert) ≜ cert ∈ buf

∧ HasPrevious(vstate, prevs, round)
where vstate = V⟨. . . , buf , . . .⟩

∧ cert = C⟨. . . , round , . . . , prevs, . . .⟩
that says whether a certificate can be stored in a validator’s DAG from the standpoint of the validator state:

1. The certificate must be in the buffer of the validator.
2. The DAG must have all the certificates in the previous round referenced by the certificate.

Recall that it is an invariant (proved later) that prevs is empty if round is 1, and that HasPrevious also
handles this special case.

We define a predicate

StoreCond : State ×Addr × Cert → B
StoreCond(state, val , cert) ≜ val ∈ D(vstates)

∧ vstates(val) ̸= faulty
∧ StoreCondVal(vstates(val), cert)

where state = S⟨vstates, . . .⟩
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that says whether a certificate can be stored in a validator’s DAG from the standpoint of the system state:
1. The validator in question must be a correct one.
2. The validator state must satisfy the appropriate conditions; see StoreCondVal , defined earlier.
We define a function

StoreNextVal : Vstate × Cert → Vstate

StoreNextVal(vstate, cert) ≜ vstate ′′

where vstate = V⟨round , dag , buf , . . .⟩
∧ cert = C⟨. . . , round ′, . . .⟩
∧ vstate ′ = UpdateBuf (vstate, buf \ {cert})
∧ vstate ′′ = UpdateDag(vstate ′, dag ∪ {cert})

∧ round ′′ =

{
round ′ − 1 if round ′ > round + 1
round otherwise

∧ vstate ′′′ = UpdateRound(vstate ′′, round ′′)

that updates the state of a correct validator by storing a certificate from the buffer into the DAG:
1. The initial validator state vstate is updated by removing the certificate from the buffer.
2. The resulting validator state vstate ′ is updated by adding the certificate to the DAG.
3. The resulting validator state vstate ′′ is possibly updated by moving its current round to one less than

the certificate, if that is ahead of the current round.
4. The resulting validator state vstate ′′′ is the final one.

It is an invariant (proved later) that the DAG and buffer of each validator state are disjoint, and since this
state change is conditioned under StoreCondVal defined earlier, The set subtraction and union operations
indeed move the certificate from the buffer to the DAG. The round advancement happens to catch up with
other validators, which must have moved to later rounds given that a certificate with a later round is received.

TODO: the details of this round advancement, along with the events to advance rounds defined later,
need further study and investigation, to ensure that they give us the desired properties

We define a function

StoreNext : State ×Addr × Cert → State

StoreNext(state, val , cert) ≜ S⟨vstates ′,msgs⟩
where state = S⟨vstates,msgs⟩

∧ vstates ′ = vstates{val 7→ StoreNextVal(vstates(val), cert)}

that updates the system state by storing a certificate from the buffer of a validator into the DAG of the
validator. This is conditioned under StoreCond defined earlier, which ensures that val is a correct validator
in the system.

This event moves a certificate from the buffer to the DAG, provided that all the certificates it is based on
(i.e. the ones it references from the previous round) are already in the DAG. This is an important condition,
which guarantees a number of properties (proved later) of the DAGs of correct validators, such as the closure
of certificates’ causal histories. The purpose of the buffer, as explained in Section 2.1.6, is to hold certificates
received via messages until the previous certificates are in the DAG, given that certificates may be received
in any order.

2.5.4 Round Advancement

TODO: this is consistent with the snarkOS code some time ago, but things may have changed there and
thus may need to be updated here; the whole logic of round advancement also needs to be analyzed in more
detail

We define a predicate

AdvanceCondValEven : Vstate × Pω(Addr)× (N \ {0}) → B
AdvanceCondValEven(vstate, vals, quor) ≜ C⟨lead , round , . . .⟩ ∈ dag

∨ timer = expired ∧
|{cert ∈ dag | cert = C⟨. . . , round , . . .⟩}| ≥ quor

where vstate = V⟨round , dag , . . . , timer⟩
∧ lead = Leader(vals, round)
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that says when an even round number can be incremented by one in the state of a validator:
1. We choose the address of the leader of the round.
2. The round can be incremented if one of the following conditions holds:

(a) The DAG has the anchor for the round, i.e. the certificate with the leader as author at that round.
(b) The timer has expired and the round already has as many certificates as the quorum number.

This predicate is used, below, with vals = D(vstates) and quor = Quorum(state), and when round is even.
Normally, when a validator is in an even round, they wait for the anchor at that round, which is the

certificate with that round and with the leader as author (the author may be that or another validator).
When the anchor is received (or authored if the validator is the leader), the validator can advance to the
next round. However, if the leader is faulty, the anchor may never arrive (it may not be generated at all).
Thus, if there are already a number of certificates at least equal to the quorum, and the timer has expired,
the validator should not wait for the anchor, which may never arrive, because the remaining validators whose
certificates have not arrived yet (including the anchor) may be all faulty.

We define a function

Tally : Pω(Cert)× Round ×Addr → N× N
Tally(dag , round , lead) ≜ ⟨yes,no⟩

where yes = |{C⟨. . . , round , . . . , prevs, . . .⟩ ∈ dag | lead ∈ prevs}|
∧ no = |{C⟨. . . , round , . . . , prevs, . . .⟩ ∈ dag | lead ̸∈ prevs}|

that tallies the positive and negative votes for a leader address lead in a round round , within a DAG dag .
When this function is used, round is an odd round number different from one, and lead is the address of the
leader for the even round just before round . We consider all the certificates in the DAG at round round : if a
certificate has an edge pointing to the leader, it counts as a positive vote; otherwise, it counts as a negative
vote. Only certificates in the DAG are considered; the absence of a certificate at round round for a certain
author does not count as either a positive vote or a negative vote.

We define a predicate

AdvanceCondValOdd : Vstate × Pω(Addr)× (N \ {0})× N → B
AdvanceCondValOdd(vstate, vals, quor ,maxf ) ≜ C⟨lead , round − 1, . . .⟩ ̸∈ dag

∨ yes ≥ maxf + 1
∨ no ≥ quor
∨ timer = expired

where vstate = V⟨round , dag , . . . , timer⟩
∧ lead = Leader(vals, round − 1)
∧ ⟨yes,no⟩ = Tally(dag , round , lead)

that says when an odd non-one round number can be incremented by one in the state of a validator:
1. We choose the address of the leader of the immediately preceding even round.
2. The round can be incremented if one of the following conditions holds:

(a) The anchor at the even round is absent.
(b) The odd round has at least as many positive votes for the even-round leader as one more than

the maximum number of faulty validators.
(c) The odd round has at least as many negative votes for the odd-round leader as the quorum

number.
(d) The timer has expired.

This predicate is used, below, with vals = D(vstates), quor = Quorum(state), andmaxf = MaxFaulty(state),
and when round is odd and not one.

The condition on positive votes being at least one more than the maximum number of faulty validators
is an important one: by reasoning about the intersection between these positive voters and the previous
certificates at the same odd round that a certificate in the subsequent even round links to, we can guarantee
consistency in the anchors in the DAG of different correct validators, and thus guarantee that the blockchains
of different correct validators never fork. All of this is proved later.
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We define a predicate

AdvanceCondVal : Vstate × Pω(Addr)× (N \ {0})× N → B

AdvanceCondVal(vstate, vals, quor ,maxf ) ≜
round mod 2 = 0 ∧
AdvanceCondValEven(vstate, vals, quor)

∨
round mod 2 = 1 ∧
round ̸= 1 ∧
AdvanceCondValOdd(vstate, vals, quor ,maxf )

∨ round = 1
where vstate = V⟨. . . , round , . . .⟩

that says when the round number of a validator can be incremented from the standpoint of the state of the
validator, which is the case if one of the following conditions holds:

1. The round number is even, and AdvanceCondValEven (defined earlier) holds.
2. The round number is odd but not 1, and AdvanceCondValOdd (defined earlier) holds.
3. The round number is 1. TODO: this looks suspicious, because it would mean that, in the initial state,

a validator can immediately advance the round, which should not be the case; so this may need to be
constrained further

We define a predicate

AdvanceCond : State ×Addr → B
AdvanceCond(state, val) ≜ val ∈ D(vstates)

∧ vstates(val) ̸= faulty
∧ AdvanceCondVal(vstates(val), vals, quor ,maxf )

where state = S⟨vstates, . . .⟩
∧ vals = D(vstates)
∧ quor = Quorum(state)
∧ maxf = MaxFaulty(state)

that says when the round number of a validator in the system can be incremented:
1. The validator in question must be a correct one.
2. The validator state must satisfy the appropriate conditions; see AdvanceCondVal , defined earlier.
We define a function

AdvanceNextVal : Vstate → Vstate

AdvanceNextVal(vstate) ≜ vstate ′′

where vstate = V⟨round , . . . , timer⟩
∧ vstate ′ = UpdateRound(vstate, round + 1)
∧ vstate ′′ = UpdateTimer(vstate ′, running)

that advances the round number of a validator:
1. The initial validator state vstate is updated by incrementing the round by one.
2. The resulting validator state vstate ′ is updated by starting the timer, i.e. setting it to running.
3. The resulting validator state vstate ′′ is the final one.
We define a function

AdvanceNext : State ×Addr → State

AdvanceNext(state, val) ≜ S⟨vstates ′,msgs⟩
where state = S⟨vstates,msgs⟩

∧ vstates ′ = vstates{val 7→ AdvanceNextVal(vstates(val))}

that updates the system state by advancing the round of a correct validator. This is conditioned under
AdvanceCond defined earlier, which ensures that val is a correct validator in the system.
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2.5.5 Certificate Commitment

We define a predicate

CommitCondVal : Vstate × Pω(Addr)× N → B
CommitCondVal(vstate, vals,maxf ) ≜ round mod 2 = 1

∧ round ̸= 1
∧ round − 1 > last
∧ C⟨lead , round − 1, . . .⟩ ∈ dag
∧ yes ≥ maxf + 1

where vstate = V⟨round , dag , . . . , last , . . .⟩
∧ lead = Leader(vals, round − 1)
∧ ⟨yes, . . .⟩ = Tally(dag , round , lead)

that says whether a validator can commit one or more anchors from the standpoint of the validator state:
1. The validator must be in an odd round.
2. The validator must not be in round 1.
3. The immediately preceding even round must have the anchor, i.e. the certificate authored by the leader

of that round.
4. The current odd round must have a number of positive votes for the leader that is at least one more

than the maximum number of faulty validators.
This predicate is used, below, with vals = D(vstates) and maxf = MaxFaulty(state).

We define a predicate

CommitCond : State ×Addr → B
CommitCond(state, val) ≜ val ∈ D(vstates)

∧ vstates(val) ̸= faulty
∧ CommitCondVal(vstates(val), vals,maxf )

where state = S⟨vstates, . . .⟩
∧ vals = D(vstates)
∧ maxf = MaxFaulty(state)

that says whether a validator in the system can commit one or more anchors:
1. The validator in question must be a correct one.
2. The validator must satisfy the appropriate conditions; see CommitCondVal , defined earlier.
We define a function

AnchorsToCommit : N× Round × Pω(Cert)× Pω(Addr) → Cert∗

AnchorsToCommit(last , round , dag , vals) ≜ [cert1, . . . , certn ]
where [x0, . . . , xn ] ∈ {x ∈ N | x mod 2 = 0}+

∧ n ≥ 1
∧ last = x0 < . . . < xn = round
∧ ∀i ∈ {1, . . . ,n} . xi−1 = max {x ∈ N | x < xi ∧ (x = 0 ∨AnchorPath(xi , x , dag , vals))}
∧ ∀i ∈ {1, . . . ,n} . cert i = C⟨. . . , xi , . . .⟩ ∈ Anchors(dag , vals)

that yields the anchors to commit when the anchor at the even round round has sufficient votes in the
immediately subsequent odd round (as expressed by CommitCondVal). We start with round xn = round
and the anchor certn at that round. We find the closest (i.e. largest) round xn−1 < xn with an anchor
certn−1 such that there is a path from certn to certn−1. This may skip rounds between xn−1 and xn , if
those rounds lack the anchor or lack a path to their anchor from certn . We repeat the process to find the
closest anchor certn−2 to which there is a path from certn−1, again possibly skipping rounds in between. We
continue like this until we reach x0 = last , where last is the last committed round in the validator state, or 0
if the validator has not committed any round yet. Note that the possibility of x0 = last = 0 is catered for by
the definition above, via the disjunct x = 0 in the set whose maximum is taken. The function just defined
yields the anchors to commit in chronological order, from oldest to newest. There is always at least one
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anchor, under the predicate CommitCondVal that conditions this function; there could be just one anchor,
or more than one anchor, with cert1 having a path to the last committed one, or to none if last = 0.

We define a function

AddBlock : Block∗ × Pω(Cert)× Cert × Pω(Cert) → Block∗ × Pω(Cert)

AddBlock(blocks, comm, cert , dag) ≜ ⟨blocks ′, comm ′⟩
where cert = C⟨. . . , round , . . .⟩

∧ [cert1, . . . , certm ] = Order({cert ′ ∈ dag \ comm | Path(cert , cert ′, dag)})
∧ ∀i ∈ {1, . . . ,m} . cert i = C⟨. . . , trans i , . . .⟩
∧ trans = trans1 ⋊⋉ · · · ⋊⋉ transm
∧ blocks ′ = blocks ⋊⋉ [B⟨trans, round⟩]
∧ comm ′ = comm ∪ {cert1, . . . , certm}

that adds a block to the blockchain in a validator state. Here blocks, comm, and dag are components of the
validator state, and cert is an anchor to be committed, whose round is round . We take the causal history of
cert , i.e. all the certificates in the DAG to which cert has a path to, but we exclude the certificates already
committed (the ones in comm). We order those certificates in some way (the same for all validators; see
Section 2.3.13), and we concatenate all the transactions from those certificates, in order. We form a block
with all those transactions trans, and with round round , and we return the blockchain extended with that
block. We also return the updated set of committed certificates.

We define a function

commitNextVal : Vstate × Pω(Addr) → Vstate

commitNextVal(vstate, vals) ≜ vstate ′′

where vstate = V⟨round , dag , . . . , last , blocks, comm, . . .⟩
∧ [cert1, . . . , certn ] = AnchorsToCommit(last , round , dag , vals)
∧ blocks0 = blocks
∧ comm0 = comm
∧ ∀i ∈ {1, . . . ,n} . ⟨blocks i , commi⟩ = AddBlock(blocks i−1, commi−1, cert i , dag)
∧ vstate ′ = UpdateBlocks(vstate, blocksn)
∧ vstate ′′ = UpdateComm(vstate ′, commn)

that updates the state of a validator by committing one or more anchors. When this is used (below), vals is
the set of all validator addresses. This predicate is conditioned under CommitCondVal , defined earlier, which
means that there are one or more anchors to commit, which we obtain from AnchorsToCommit . We add
a block for each anchor, from oldest to newest, and we update the validator state with the final blockchain
and the final set of committed certificates.

We define a function

CommitNext : State ×Addr → State

CommitNext(state, val) ≜ S⟨vstates ′,msgs⟩
where state = S⟨vstates,msgs⟩

∧ vstates ′ = vstates{val 7→ commitNextVal(vstates(val),D(vstates))}

that updates the system state by committing anchors in a correct validator. This is conditioned under
CommitCond defined earlier, which ensures that the validator is correct and has anchors to commit.

2.5.6 Timer Expiration

We define a predicate

TimeoutCond : State ×Addr → B
TimeoutCond(state, val) ≜ val ∈ D(vstates)

∧ vstates(val) = V⟨. . . , timer⟩ ≠ faulty
∧ timer = running

where state = S⟨vstates, . . .⟩
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that says when a timeout event in a validator in the system. The validator in question must be a correct
one, and its timer must be running.

We define a function

TimeoutNext : State ×Addr → State

TimeoutNext(state, val) ≜ S⟨vstates ′,msgs⟩
where state = S⟨vstates,msgs⟩

∧ vstate = vstates(val)
∧ vstate ′ = UpdateTimer(vstate, expired)
∧ vstates ′ = vstates{val 7→ vstate ′}

that updates the state of a validator in the system when a timeout happens. This is conditioned under
TimeoutCond defined earlier, which guarantees that val is the address of a correct validator. The timer
state component of the validator is set to indicate expiration.

Our formal specification does not model real time explicitly, but it models the presence of the timers (one
per correct validator) and the possible occurrence of timeouts. This enables reasoning about the behavior of
the system when timeouts occur and do not occur, based on sequences of events devoid of time information.

2.5.7 Transition Predicate and Function

We define the transition predicate as

EventCond : State × Event → B
EventCond(state,Ecreate[cert ]) ≜ CreateCond(state, cert)

EventCond(state,Ereceive[msg ]) ≜ ReceiveCond(state,msg)

EventCond(state,Estore[cert , val ]) ≜ StoreCond(state, cert , val)

EventCond(state,Eadvance[val ]) ≜ AdvanceCond(state, val)

EventCond(state,Ecommit[val ]) ≜ CommitCond(state, val)

EventCond(state,Etimer[val ]) ≜ TimeoutCond(state, val)

i.e. in terms of the predicates defined earlier, based on the kind of event.
We define the transition function as

EventNext : State × Event → State

EventNext(state,Ecreate[cert ]) ≜ CreateNext(state, cert)

EventNext(state,Ereceive[msg ]) ≜ ReceiveNext(state,msg)

EventNext(state,Estore[cert , val ]) ≜ StoreNext(state, cert , val)

EventNext(state,Eadvance[val ]) ≜ AdvanceNext(state, val)

EventNext(state,Ecommit[val ]) ≜ CommitNext(state, val)

EventNext(state,Etimer[val ]) ≜ TimeoutNext(state, val)

i.e. in terms of the functions defined earlier, based on the kind of event.

2.6 Labeled State Transition System

We define the AleoBFT labeled state transition system as

SysAleoBFT = ⟨SAleoBFT,EAleoBFT, IAleoBFT,TAleoBFT⟩

where

SAleoBFT ≜ State

EAleoBFT ≜ Event

IAleoBFT ≜ InitState

TAleoBFT ≜ {⟨state, event , state ′⟩ ∈ State × Event × State | EventCond(state, event)
∧ EventNext(state, event) = state ′}
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i.e. the set of possible states is defined in Section 2.1.8, the set of possible events is defined in Section 2.2,
the set of possible initial states is defined in Section 2.4, and the transition relation is determined by the
predicate and function defined in Section 2.5.7, as the set of triples of old states, events, and new states such
that the predicate holds on the old state and event and the function yields the new state on the old state
and event.

This AleoBFT labeled state transition system is an instance of the generic notion of labeled state tran-
sition system introduced at the beginning of Section 2.

3 Correctness

TODO: correctness theorems of AleoBFT (in progress in ACL2)

4 Conclusion

TODO: closing remarks, related and future work

A Mathematical Notation

A.1 Booleans and Numbers

Booleans B is the set of booleans, {True, False}.

Natural Numbers N is the set of natural numbers, {0, 1, 2, . . .}.

A.2 Logic

Definitional Equality ≜ is used to define a new term from known terms. For example, Round ≜ N \ {0}
defines Round as the set of positive integers.

Conjunction A ∧ B is the conjunction of the assertions A and B. It is true exactly when both A and B
are true.

Disjunction A ∨B is the disjunction of the assertions A and B. It is true exactly when either A or B or
both are true.

Implication A =⇒ B is equivalent to “if A then B”. For example,

i ̸= i ′ =⇒ cert i ̸= cert i′

states that if i is not equal to i ′, then cert i is not equal to cert i′ .

Universal Quantification ∀a . P states that for all a, the predicate P is true. Usually the variable of
quantification has a restriction, so ∀a ∈ A . P is equivalent to ∀a . a ∈ A =⇒ P . For example, the following
states that all values of i from 1 to m are less than m+1: ∀i ∈ {1, . . . ,m} . i < m+1. This can also be read
as “for all i, if i is in the set of integers from 1 to m, then i is less than m+1.” Multiple universally-quantified
variables can be used with a single forall symbol: ∀ a, b. P is equivalent to ∀a . ∀b . P .

Existential Quantification ∃a . P states that there exists an a such that the predicate P is true. Usually
the the variable of quantification has a restriction: ∃a ∈ A . P is equivalent to ∃a . a ∈ A ∧ P . The quantified
form can be a constructor with multiple existentially-quantified variables. For example,

∃[cert1, . . . , certp ] ∈ Cert+ . 〈predicate involving the certi variables〉

states that “there exists a sequence of certificates in Cert+, which we will call cert1 through certp , such that
...”. By convention, if p = 1, then [cert1, . . . , certp ] means [cert1].
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A.3 Sets

Empty Set ∅ is the empty set.

Set Comprehension {a | P} is the set of all elements a such that the predicate P is true. There can be
an expression to the left of the vertical bar, which is evaluated for all values of the variables in the expression
that satisfy the predicate, and the results of evaluation collected in the set. For example,

{B⟨trans, round⟩ | trans ∈ Trans∗ ∧ round ∈ Round}

defines the set of blocks that can be formed from a transaction sequence and a round number.
If there is a membership test on the left side of the vertical bar, then the set is restricted to those elements

that pass the test. I.e. {a ∈ A | P} is equivalent to {a | a ∈ A ∧ P}. For example,

{val ∈ D(vstates) | vstates(val) = faulty}

defines the set of faulty validators.

Cardinality |A| is the cardinality of the finite set A, i.e. the number of elements A contains.

Set Membership a ∈ A states that a is an element of the set A.

Set Difference A \ B is the set of elements in A that are not in B. For example, N \ {0} is the set of
positive integers, {1, 2, 3, . . .}.

Set Union A ∪ B is the union of the sets A and B. For example, Round ∪ {0} is the set containing the
round numbers and 0, i.e. N.

Inclusive Subset A ⊆ B states that A is a subset of B or equal to B.

Finite Powerset Pω(A) is the finite powerset of the set A, i.e. the set of all finite subsets of A. Typically
this is used along with set membership. For example, prevs ∈ Pω(Addr) states that prevs is a finite set of
addresses. This idiom is used instead of prevs ⊆ Addr because the the latter does not restrict prevs to being
finite.

Cartesian Product A×B is the Cartesian product of the sets A and B, i.e. the set of all pairs (2-tuples)
⟨a, b⟩ where a is an element of A and b is an element of B. For example, Addr ×Round is the set of all pairs
⟨auth, round⟩ where auth is an address in Addr and round is a round number in Round . Cartesian product
can operate on more than two sets, in which case the tuples have more than two elements.

A.4 Sequences

Empty Sequence ϵ is the empty sequence.

Sequence Constructor [a1, . . . , an] is a sequence of elements a1 through an. By convention, if n = 1
then [a1, . . . , an] is [a1].

Sequence Indicator a is a sequence, which is indicated by the line over it. For example, trans ∈ Trans∗

states that trans is a member of Trans∗. Described another way, after considering the next paragraph,
trans ∈ Trans∗ states that trans is a sequence, possibly empty, of transactions taken from the set Trans.

Set of Sequences over a Set A∗ is the set of all finite sequences of elements of the set A. For example,
Trans∗ is the set of all finite sequences of transactions, given that Trans is the set of all transactions.
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Set of Nonempty Sequences over a Set A+ is the set of all non-empty finite sequences of elements of
the set A.

Sequence Concatenation a ⋊⋉ b is the sequence obtained by concatenating the sequences a and b.

A.5 Tuples

Tuple Constructor A tuple is constructed with one or more elements within angle brackets. Examples:
⟨auth, round⟩; ⟨S ,E , I ,T ⟩.

Named Tuple Constructor A(..), where A is an explicitly-defined name in sans-serif font, is a function-
call-like constructor of a “colored” tuple where the color is the name of the object constructed. For example,
B⟨trans, round⟩ is a tuple with name B, which names a block, and two elements: a transaction sequence and
a round number. It is equivalent to ⟨B, trans, round⟩.

For reference, the most common named tuples are:
B: block
C: certificate
M: message
S: system state
V: validator state

A.6 Maps

A map is another name for a finite set of ordered pairs ⟨a, b⟩, where a is the key and b is the value. The
key is unique in the map. The domain is the set of keys and the range is the set of values. A map is also a
mathematical function.

Set of Maps A ⇝ B is the set of finite maps that have a domain in Pω(A) and a range in Pω(B). For
example, Addr ⇝ Vstate ∪ {faulty} is the set of maps whose domain is a finite set of addresses and whose
range is an finite subset of Vstate ∪ {faulty}.

Map Declaration m : A ⇝ B states that m is a map whose domain is a finite inclusive subset of A
(which could be equal to A if A is finite) and whose range is a finite inclusive subset of B. For example, to
state that a map vstates is in the set of maps mentioned above, we write

vstates : Addr ⇝ Vstate ∪ {faulty}

I.e. vstates is a map whose domain is a finite set of addresses and whose range is a finite inclusive subset of
Vstate ∪ {faulty}.

Domain D(A) is the domain of map A. For example, D(vstates) is the domain of the map vstates.

Map Update m{a 7→ b} is the map formed by starting with m and changing key a’s value to b. For
example, vstates{val 7→ newstate} is the map formed by starting with vstates and updating key val ’s value
to newstate.

A.7 Functions

A function is another name for a set of ordered pairs ⟨a, b⟩, where a is the input and b is the output. The
input is unique in the set, i.e. for a given input, there is only one possible output. The domain is the set of
inputs permitted, which can be an infinite set, and the range is the possibly infinite set of possible outputs.
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Set of Functions A → B is the set of functions whose domain is A and whose range is a subset-or-equal
of B. Each function is total, i.e. it is defined for all elements of A. For example, State → N \ {0} is the set
of functions whose domain is State and whose range is a subset-or-equal of N \ {0}.

Function Declaration f : A → B states that f is a function whose domain is A and whose range is a
subset-or-equal of B. For example, to state that a function NumAll is in the set of functions mentioned
above, we write NumAll : State → N \ {0}. I.e. NumAll is a function whose input can be any element of
State and whose output is a positive integer.
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